

50. Otwarte Seminarium z Akustyki

Wpływ stężenia defektów na wysokość relaksacyjnego piku tarcia wewnętrznego

Beata BRUŚ, Marek CZERWIEC, Aldona ZARYCKA, Jan ILCZUK Uniwersytet Śląski, Katedra Materiałoznawstwa, ul. Żeromskiego 3, 41-200 Sosnowiec

Streszczenie

W pracy przedstawiono rezultaty badań wpływu stężenia defektów punktowych na wysokość relaksacyjnego piku tarcia wewnętrznego. Próbki ceramiczne o wymiarach $(30 \times 10 \times 0.9)$ mm³ otrzymano metodą gorącego prasowania i klasycznego spiekania. Część próbek została spolaryzowana metodą niskotemperaturową (T=423 K, $E_{pol.}=30$ kV/cm, t=30 min.), a część napromieniowana promieniowaniem γ . Badania temperaturowych zależności tarcia wewnętrznego Q^{-1} i dynamicznego modułu Younga E zostały wykonane za pomocą automatycznego relaksatora częstotliwości akustycznych RAK-3 sterowanego komputerowo. Na krzywych TW otrzymanych podczas nagrzewania zaobserwowano piki relaksacyjne związane z oddziaływaniem defektów punktowych ze ścianami domenowymi. Ze wzrostem stężenia defektów na skutek napromieniowania obserwowano spadek wartości tła TW oraz zmiany wysokości piku relaksacyjnego.

1. WSTĘP

Lawinowo rosnace zastosowania techniczne ferroelektrycznej przetworniki ceramiki jako elektromechaniczne, czujniki drgań, echosondy, generatory ultradźwięków i filtry zmuszają do intensywnych badań tych materiałów. Efektem tych badań ma być uzyskanie materiału ściśle 0 określonych, optymalnych właściwościach.

Na optymalizację właściwości ceramiki ferroelektrycznej zasadniczy wpływ ma korelacja między składem chemicznym roztworu stałego, jego strukturą domenową i właściwościami elektrofizycznymi, a także właściwościami relaksacyjnymi.

W badaniach właściwości mechanicznych, procesów relaksacyjnych, prowadzących do lepszego zrozumienia natury i zachowania defektów krystalicznych oraz ich wpływu na właściwości materiału ceramicznego coraz częściej wykorzystuje się metody nieniszczące badań materiałów. Jedną z bardziej czułych metod, umożliwiającą w sposób nieniszczący określenie mechanizmów odpowiedzialnych za rozpraszanie energii w materiale ceramicznym jest metoda tarcia wewnętrznego (TW) [1-3]. Bazuje ona na pomiarach strat mechanicznych w funkcji temperatury lub częstotliwości. Ostatnio prowadzone sa badania TW dla wieloskładnikowych roztworów stałych otrzymanych na bazie roztworu stałego PbTiO₃-PbZrO₃,

zwanego w skrócie PZT [4-9], gdyż materiały te należą do najbardziej efektywnych materiałów piezoelektrycznych. Mechanizmami odpowiedzialnymi za tarcie wewnętrzne w tej ceramice, w znacznej mierze, są procesy związane z reorientacją domen, oddziaływanie defektów strukturalnych ze ściankami domenowymi, a także przemiany fazowe.

Celem obecnej pracy jest określenie wpływu zmian w stężeniu defektów w wieloskładnikowej ceramice typu PZT na wysokość relaksacyjnego maksimum tarcia wewnętrznego.

2. MATERIAŁ BADAŃ I METODYKA BADAŃ

Badano próbki wieloskładnikowych piezoceramik typu PZT o następujących składach:

skład I – $Pb_{0,975}Ba_{0,01}Ca_{0,01}Sr_{0,005}(Zr_{0,52}Ti_{0,48})O_3 + 1,4$ wag % $Bi_2O_3 + 0,3$ wag % GeO,

skład II – $(Pb_{0,9}Ba_{0,1})$ ($Zr_{0,53}Ti_{0,47}$)O₃+2% mol. Nb₂O₅.

Ceramika o składzie I należy do ceramiki ferroelektrycznie miękkiej z obszaru morfotropowego. Charakteryzuje się wysokimi wartościami parametrów dielektrycznych i piezoelektrycznych: $\varepsilon_{33}^T / \varepsilon_0 - 1210$, $tg\delta - 0,02$, $d_{31} - 60 \cdot 10^{-12}$ C/N, $k_p - 0,3$ oraz wysoką stabilnością tych parametrów w podwyższonych temperaturach i ciśnieniu. Znajduje ona zatem szerokie zastosowanie w przemyśle w czujnikach drgań, czujnikach ciśnienia.

Ceramika o składzie II charakteryzuje się następującymi wartościami parametrów: $\varepsilon_{33}^T / \varepsilon_0 - 1700$, $tg\delta - <0.025$, $d_{31} - 120 \cdot 10^{-12}$ C/N, $k_p - 0.5$. Na bazie tej ceramiki buduje się przetworniki bimorficzne i zapłonowe, pracujące w zakresie temperatur 233 – 358 K.

Próbki zostały otrzymane metodą prasowania na gorąco (skład I) oraz metoda klasycznego spiekania (skład II). Otrzymane próbki były szlifowane, polerowane, a następnie naniesiono na nie elektrody z pasty srebrnej metodą wpalania. Część próbek poddano polaryzowaniu metodą niskotemperaturową, pozostałe napromieniowano а promieniowaniem γ dawkami od 1 R do 6 R. Źródłem promieniowania był Ir - 192 o aktywności źródła 1,354 TBq. Dla wszystkich próbek wyznaczono temperaturowe zależności tarcia wewnętrznego i zmian dynamicznego modułu Younga podczas nagrzewania i chłodzenia przy szybkości zmian temperatury 3 deg/min. W badaniach stosowano próbki o wymiarach: długość - 30 mm, szerokość – 10 mm, grubość – 0,9 mm.

Pomiary przeprowadzono za pomocą automatycznego relaksatora częstotliwości akustycznych RAK-3, sterowanego komputerem [10].

3. WYNIKI POMIARÓW I ICH OMÓWIENIE

Na rys. 1 pokazano, dla przykładu, krzywe $Q^{-1}=f(T)$ i E=f(T) uzyskane dla badanych ceramik podczas nagrzewania z szybkością 3 deg/min.

Wartość dynamicznego modułu Younga E wyznaczono na podstawie pomiarów częstotliwości rezonansowej f drgań próbki, przeprowadzonych równolegle z pomiarami TW, korzystając z zależności

$$E = 94,68 \cdot \left(\frac{l_r}{h}\right)^3 \cdot \frac{m_d}{b} \cdot f^2 \quad [Pa], \tag{1}$$

gdzie: l_r , h, b, m_d – to odpowiednio długość, grubość, szerokość, masa drgającej części próbki.

Na krzywej $Q^{-1}(T)$ uzyskanej dla składu I można zaobserwować dwa maksima tarcia wewnętrznego: P_R w temperaturze T_R =393 K oraz P_F w temperaturze T_F =638 K. Na krzywej uzyskanej dla składu II – można zaobserwować trzy maksima tarcia wewnętrznego: P_{R1} w temperaturze T_{R1} =355 K, P_{R2} w T_{R2} =510 K oraz P_F w temperaturze $T_{F'}$ =645 K. Maksimom tarcia wewnętrznego na krzywych 1 i 2 odpowiadają minima dynamicznego modułu Younga (krzywe 1' i 2'). Krzywe uzyskane w procesie chłodzenia przeprowadzonego bezpośrednio po zakończeniu procesu nagrzewania miały analogiczny przebieg.

Rys. 1. Temperaturowe zależności tarcia wewnętrznego i dynamicznego modułu Younga uzyskane dla badanych składów: skład I (krzywe 1 i 1') skład II (krzywe 2 i 2')

Na podstawie pomiarów tarcia wewnętrznego przy różnych częstotliwościach pomiarowych oraz pomiarów zależności przenikalności elektrycznej od temperatury stwierdzono, że maksima P_F i P_F' związane są z przemianą z fazy ferroelektrycznej do paraelektrycznej [5].

W pracy [10] stwierdzono, że maksima P_R , P_{R1} i P_{R2} mają charakter relaksacyjny. Maksima P_R i P_{R1} związane są z oddziaływaniem defektów punktowych (wakansów tlenowych) ze ściankami domenowymi, co potwierdzają, obliczone na podstawie prawa Arrheniusa z półszerokości krzywej $Q^{-1}(T)$, wartości energii aktywacji *H* oraz czynnika przedeksponencjalnego τ_0 (tabela I) [11]. Natomiast maksimum P_{R2} związane jest z lepkim ruchem ścian domenowych.

W celu zbadania wpływu stężenia defektów na tarcie wewnętrzne w wieloskładnikowych ceramikach typu PZT, na wysokość piku relaksacyjnego badane ceramiki napromieniowano promieniowaniem γ . Promieniowanie γ padając na materiał ceramiczny powoduje powstanie w nim dodatkowych defektów punktowych, co prowadzi do wzrostu stężenia tego rodzaju defektów.

Na krzywych tarcia wewnętrznego uzyskanych dla składu I po napromieniowaniu można zaobserwować spadek wysokości piku P_R od 0,011 do 0,007 (po odcięciu tła TW) oraz przesunięcie jego położenia w kierunku wyższych temperatur (rys. 2). Wraz ze wzrostem dawki promieniowania obserwuje się również spadek wartości energii aktywacji *H* od 0,86±0,02 eV dla próbki nie napromieniowanej do 0,70±0,02 eV dla 6 R oraz wzrost τ_0 od (1,43±0,04)·10⁻¹⁵ s do (1,58±0,04)·10⁻¹² s (tabela I). Za obserwowane efekty odpowiedzialne są wprowadzone dodatkowe defekty punktowe kotwiczące ściankę domenową i utrudniające ruch tych ścian.

Rys. 2. Temperaturowe zależności tarcia wewnętrznego uzyskane dla składu I w stanie wyjściowym i po napromieniowaniu w zakresie temperatur występowania maksimum relaksacyjnego P_R .

Na podstawie uzyskanych zależności dla ceramiki o składzie II można zauważyć, że napromieniowanie dawką 1 R nie powoduje znaczących zmian w wartości tarcia wewnętrznego. Nie obserwuje się również temperaturowego przesunięcie piku P_{R1} w kierunku wyższych temperatur (rys. 3). Dopiero napromieniowanie dawkami 5 i 6 R spowodowało znaczący spadek wartości tła tarcia wewnętrznego od 0,041 (dla próbki w stanie wyjściowym) do 0,021 (dla próbki napromieniowanej dawką 5 R) oraz do 0,018 (dla napromieniowanej dawką 6 R).

Rys. 3. Temperaturowe zależności tarcia wewnętrznego uzyskane dla składu II w stanie wyjściowym i po napromieniowaniu w zakresie temperatur występowania maksimum relaksacyjnego P_{RI}

Spadek wysokości piku P_{R1} obserwuje się dopiero dla wyższych dawek napromieniowania. Nie nastąpiło jednak wyraźne przesunięcie piku relaksacyjnego P_{R1} w kierunku wyższych temperatur. Wraz ze wzrostem dawki następuje spadek wartości energii aktywacji *H* i czasu relaksacji τ_0 .

Tab 1. Wartości energii aktywacji H i czynnika przedeksponencjalnego τ_0 dla badanych wieloskładnikowych ceramik typu PZT

<u></u>			
Materiał		Н	$ au_0$
		[eV]	[s]
Skład I	stan	0,86±0,02	$(1,43\pm0,04)\cdot10^{-15}$
	wyjściowy		
	dawka 1 R	0,83±0,02	$(3,29\pm0,08)\cdot10^{-14}$
	dawka 5 R	0,71±0,02	$(1,48\pm0,04)\cdot10^{-12}$
	dawka 6 R	0,70±0,02	$(1,58\pm0,04)\cdot10^{-12}$
Skład II	stan	1,14±0,02	$(6,81\pm0,04)\cdot10^{-15}$
	wyjściowy		
	dawka 1 R	1,14±0,02	$(1,03\pm0,06)\cdot10^{-15}$
	dawka 5 R	0,98±0,02	$(7,72\pm0,04)\cdot10^{-17}$
	dawka 6 R	0,90±0,02	$(4,04\pm0,04)\cdot10^{-18}$

Zgodnie z modelem Postnikova przy małym stężeniu defektów tarcie wewnętrzne jest wprost proporcjonalne do stężenia defektów N_0 [12]

$$Q_m^{-1} = \frac{2(d_{33} - d_{31})^2 N_0 L^2}{\pi^2 \varepsilon_0 \varepsilon k T S},$$
 (2)

gdzie: d_{33} , d_{31} – moduły piezoelektryczne,

- ε_0 przenikalność dielektryczna próżni,
- ε przenikalność względna,
- q ładunek elektryczney
- k stała Boltzmana,

5

T-temperatura w skali bezwzględnej.

Podatność mechaniczna S opisana jest zależnością

$$S = S_0 + \frac{4q^2(d_{33} - d_{31})^2 N_0 D}{\pi^2 \varepsilon_0^2 \varepsilon^2 kT} \sum_{n=1}^{\infty} \frac{\tau_{2n-1}}{(1 - i\omega\tau_{2n-1})(2n-1)^2} - \frac{4(d_{33} - d_{31})^2}{\pi^2 \varepsilon_0 \varepsilon} \sum_{n=1}^{\infty} \frac{1}{(2n-1)^2},$$
(3)

a szerokość domeny L, określona jest wzorem o postaci

$$L = MG^{\frac{1}{2}}\beta^{-1},$$
 (4)

gdzie: M – stała,

G – rozmiar granicy między domenowej,

 β – tetragonalne zniekształcenie sieci krystalicznej,

Czas relaksacji τ_n opisany jest zależnością

$$\tau_n = D^{-1} \left(\frac{\pi^2 n^2}{L^2} + \frac{q^2 N_0}{\varepsilon \varepsilon_0 kT} \right)^{-1}.$$
 (5)

gdzie: D – rozmiar domeny.

Natomiast przy dużym stężeniu defektów wysokość relaksacyjnego piku tarcia wewnętrznego nie zależy

od stężenia defektów a jedynie od wartości modułów d_{31} i d_{33} podatności S i wartości ε_0 i ε [12]

$$Q_m^{-1} = \frac{2(d_{33} - d_{31})^2}{\pi^2 \varepsilon_0 \varepsilon S}$$
(6)

Model Postnikova odzwierciedla zachowanie się struktury badanych ceramik. Wzrost stężenia defektów spowodowany wzrostem dawki napromieniowania prowadzi – w przypadku składu II – do wzrostu wysokości piku P_{R1} i obniżenia wartość tła TW 0,041 do 0,018 dla próbki napromieniowanej dawką 6 R (rys. 3).

Po wprowadzenie dodatkowych defektów w wyniku napromieniowania do ceramiki o składzie I zaobserwowano zjawisko odwrotne – obniżenie wysokości piku P_R wraz ze wzrostem stężenia defektów (rys. 2).

Widać, że w przypadku ceramiki o składzie I spełniona jest zależność (6), a w przypadku ceramiki o składzie II zależność (2).

Napromieniowanie promieniowaniem γ prowadzi również do wzrostu wartości dynamicznego modułu Younga dla obu badanych składów; dla składu I – od 133 GPa dla próbki w stanie wyjściowym do 143 GPa dla dawki 6 R (dane dla temperatury pokojowej), dla składu II – od 102 GPa do 115 GPa.

4. WNIOSKI

- Temperaturowe zależności tarcia wewnętrznego otrzymane dla wieloskładnikowych ceramik ferroelektrycznych wykazują maksimum związane z przemianą fazową oraz maksima relaksacyjne związane z oddziaływaniem defektów punktowych ze ścianami domenowymi lub lepkim ruchem ścian domenowych.

- Na podstawie temperaturowych zależności tarcia wewnętrznego można wnioskować o zmianach stężenia defektów punktowych i zmianach w naprężeniach wewnętrznych wywołanych procesem technologicznym.

- Pokazano, że metoda TW jest metodą bardzo czułą na zmiany strukturalne, zmiany w stężeniu defektów umożliwiające w sposób nieniszczący określić mechanizmy odpowiedzialne za rozpraszanie energii w ceramice ferroelektrycznej.

LITERATURA

- 1. E. M. Bourim, H. Idrissi, B. L. Cheng, M. Gabbay, G. Fantozzi, J. De Physique, IV, 6, C8-633-636 (1996).
- Chen Ang, Zhi Yu and Cross L E 2000 Phys. Rev B 62 228
- 3. Jie Chen, Martin P Hamer and Smyth Donald M 1994 J. Appl. Phys. 76 5394
- 4. Zafar S. Johns R.E. Jiang B. White B. Chu P Taylor D and Gillespi S 1998 Appl. Phis. Lett. 73 175
- 5. B. Bruś, A. Zarycka, *Wpływ częstotliwości na zjawiska tarcia wewnętrznego w ceramice typu PZT*, Molecular and Quantum Acoustics, **23**, 91-96 (2002).
- 6. B. Bruś, J. Ilczuk, Wpływ szybkości nagrzewania na zjawiska tarcia wewnętrznego w piezoceramice typu

PZT, Otwarte Seminarium z Akustyki OSA 2002, 607-612.

- 7. R. Zachariasz, J. Ilczuk, Molecular and Quantum Acoustics, 22, 285-292 (2001).
- 8. A. Puskar, Internal Friction of Materials, Cambridge International Science Publishing, Puskar – Camridge 2001.
- C. Wang, Q. F. Fang, Z. G. Zhu, J. Phys. D: Appl. Phys. 35, 1545-1549 (2002).
- 10. R. Zachariasz, J. Ilczuk, A, Chrobak, *Wykorzystanie* relaksatora częstotliwości akustycznych w badaniach piezoceramiki typu PZT, Ceramics, **66**, 630-636.
- B. Bruś, R. Zachariasz, Badanie procesów relaksacyjnych w ceramice typu PZT metodą tarcia wewnętrznego, Conference Procedings, 32nd Winnter School on Molecular and Quantum Acoustics, 23-26.
- V. S. Postnikov, V. S. Pavlov, S. K. Turkov, *Internal friction in ferroelectrics due to interaction of domain bondaries and point defects*, J. Phys. Chem. Solids, Pergamon Press 1970, **31**, 1785-1791.